skip to main content


Search for: All records

Creators/Authors contains: "Steiger, Sarah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Light-weighting vehicular components through adoption of light-metal structural alloys holds promise for reducing the fuel consumption of internal combustion engine vehicles and increasing the range of battery electric vehicles. However, the alloyed microstructure and surface precipitates of aluminum alloys render these materials susceptible to corrosion under modest excursions from neutral pH. Traditional chromium-based anodic passivation layers are subject to increasingly stringent environmental regulations, whereas options for sacrificial cathodic films are sparse for electropositive metals. While hybrid nanocomposite coatings have shown initial promise, mechanistic underpinnings remain poorly understood. Here, a fully imidized polyetherimide (PEI) resin is utilized as the continuous phase with inclusion of unfunctionalized exfoliated graphite (UFG). A comprehensive investigation of the mechanisms of corrosion protection reveals key fundamental design principles underpinning corrosion inhibition. First, strong interfacial adhesion, which for PEI is facilitated by binding of imide carbonyl moieties to Lewis acidic sites on Al surfaces. Second, the miscibility of ion-impervious nanoscopic UFG fillers and stabilization of a substantial interphase region at UFG/PEI boundaries that result in minimizing the free volume at the filler/polymer interface. Finally, extended tortuosity of ion diffusion pathways imbued by the below-percolation-threshold 2D fillers. These three design principles help govern and modulate ion transport from electrolyte/coating interfaces to the coating/metal interface and are crucial for the extended preservation of barrier properties. The results suggest an approach to systematically activate multiple modes of corrosion inhibition through rational design of hybrid nanocomposite coatings across hard-to-abate sectors where light metal alloys are likely to play an increasingly prominent role.

     
    more » « less
  2. Abstract

    We present the direct imaging discovery of a low-mass companion to the nearby accelerating F star, HIP 5319, using SCExAO coupled with the CHARIS, VAMPIRES, and MEC instruments in addition to Keck/NIRC2 imaging. CHARISJHK(1.1–2.4μm) spectroscopic data combined with VAMPIRES 750 nm, MECY, and NIRC2Lpphotometry is best matched by an M3–M7 object with an effective temperature ofT= 3200 K and surface gravity log(g) = 5.5. Using the relative astrometry for HIP 5319 B from CHARIS and NIRC2, and absolute astrometry for the primary from Gaia and Hipparcos, and adopting a log-normal prior assumption for the companion mass, we measure a dynamical mass for HIP 5319 B of3111+35MJ, a semimajor axis of18.64.1+10au, an inclination of69.415+5.6degrees, and an eccentricity of0.420.29+0.39. However, using an alternate prior for our dynamical model yields a much higher mass of12888+127MJ. Using data taken with the LCOGT NRES instrument we also show that the primary HIP 5319 A is a single star in contrast to previous characterizations of the system as a spectroscopic binary. This work underscores the importance of assumed priors in dynamical models for companions detected with imaging and astrometry, and the need to have an updated inventory of system measurements.

     
    more » « less
  3. null (Ed.)